必威导师论坛
时间: 2014-11-24 发布者: 文章来源: 必威 审核人: 浏览次数: 313

 

导师简介

樊建席男,教授,博士生导师。2006年毕业于香港城市大学计算机科学专业,获博士学位。2002年晋升为教授。江苏省高校“青蓝工程”学术带头人。多次应邀赴香港城市大学计算机科学系合作研究。研究方向包括并行与分布式系统,多处理器互连网络,无线传感器网络,算法设计与分析,图论等。担任IEEE Trans. ComputersIEEE Trans. Parallel and Distributed SystemsJ. Parallel and Distributed Computing Parallel ComputingInformation Sciences等多个国际著名学术期刊的审稿人。在IEEE TCIEEE TPDSInfo. Sci.JPDCAlgorithm. Theo. Comp. Sci.IPLJ. SUP.、《计算机学报》、《计算机研究与发展》等国内外学术期刊和国际会议上共发表论文90多篇,其中被 SCI 收录40多篇,EI 收录50多篇(含SCI 收录论文),SCI他引次数已达到300多次,H因子已达到12;特别地,有7篇论文发表于IEEE Trans. Parallel and Distributed SystemsIEEE Trans. Computers上。承担国家自然科学基金项目3项,省部级自然科学基金项目3项。获江苏省科学技术三等奖一项。曾在国际学术会议PAAP09上做特邀报告,并担任PDCAT12ICS12PAAP10PAAP11等多个国际学术会议的程序委员会委员。

 

主讲内容:

题目:Disjoint Path Covers Problems in Communication Networks

摘要:By Menger’s theorem, if the connectivity of a network is $n$, then there exist $n$ disjoint paths between any two distinct nodes. Disjoint paths between any two distinct nodes can be used in fault-tolerant transmission in various communication networks. That is, there always exists a fault-free path to transmit packets between two fault-free nodes as long as the number of faulty nodes in a communication network does not exceed its connectivity minus 1. Furthermore, if adding a restricted condition in $n$ disjoint paths between any two distinct nodes, one can obtain Disjoint Path Cover Problem (DPCP). That is, if the connectivity of a network is $n$, then are there exist $n$ disjoint paths between any two distinct nodes, such that the $n$ paths cover the whole nodes in it? Obviously, it is an enhance to Menger’s theorem model. It is clear that it dos not hold true for any network with connectivity $n$. So far, it has been proven that some networks such as recursive circulants, a part of hypercube-like interconnection networks, etc., have this property. In this talk, we will introduce the recent results on DPCP in some networks, in particular, in a family data center networks---DCell Networks.

 

时间:1126日(周三)1400-1600

 

地点:理工楼103

 

必威

                                                           2014.11.24